观察者网

液态金属计算机研究,中美科学家团队各自提出了新思路

2017-11-26 15:13:45

长期以来,科学家一直试图造出更具有可塑性的电子器件,可穿戴设备就是一个典型例子。随着科技的不断进步,人们越来越希望AI和机械力量能够在彼此融合的前提下,保持无处不在的特性。那么液态金属能够完成这个任务么?液态金属可以用来制造计算机核心电子元件,这种材料会引发计算机革命么?最近,中美两组科学家均提出了基于液态金属的制造柔性计算机的思路,所不同的是,中国科学家提出了全液态量子器件技术的概念,而美国科学家则将晶体管突破了极限状态。

我国在国际上首次提出全液态量子器件与计算技术概念

近期,美国物理学预印本网站(arxiv.org)公布了我国一个研究小组发表了一项成果,在国际上首次提出了基于液态金属的全液态量子器件技术的概念,并明确指出这一超越传统的可变形柔性器件,有望助推新一代量子计算机和人工智能系统的发展。这个研究项目的负责人就是中科院理化所与清华大学双聘教授刘静。

液态金属是综合性前沿交叉领域,1999年刘静回国一段时间后就一直从事这方面的研究,逐步把一个本被认为“不可能”的“冷门”,做成了今天的国际学术“热点”。

量子计算机被普遍认为是新一代计算机的重大发展方向,其计算能力主要基于对微观量子态的操纵。量子计算机在物理实现上要走向集成化和小型化,其最为核心的一种逻辑运算器件是依托量子隧穿效应,即电子像沿着隧道一样穿过薄的绝缘层。

刘静教授介绍,目前几乎所有实现量子隧穿效应的器件均由一个三明治刚体结构组成,中间层为绝缘的纳米尺度薄层,两侧为导电介质电极。而具体实现的材料,中间层通常为绝缘材料,两侧区域为金属导体或超导体。这些结构由于是固体器件,制造精度要求极高,中间层厚度不易灵活调整,整个器件的形状无法变形、分割,一旦制备出来,一般只能按其特定结构实现对应功能,在应用上会受到一定限制。

液态金属既具有金属的高导电特征,又兼具流体的柔性和可变形性,表面易于达到原子级别的完美光滑度。该小组此前发表于美国《应用物理快报》上的一项实验发现,液态金属置于液体中会自然形成一个“液态金属电极—液膜—液态金属电极”的三明治结构,在外界因素作用下可灵活变形。取决于不同的外加电场作用,液膜间隙可达极小尺度甚至完全消失,其两侧电阻会随此尺寸和结构的变化作对应响应。因此,如果将两个液态金属之间的液膜厚度控制在一定范围内,则有望实现全液态量子隧穿效应。

基于此理论构想,由中科院理化所、清华大学与云南大学等机构组成的联合研究小组,首次提出了一种突破传统刚性量子器件观念的全液态量子隧穿效应器件的思想,并给出了制备方法,部分材料和技术方案已经形成发明专利。

业界专家表示,目前虽已能制造出尺寸在1纳米左右的纳米晶体管,但大量如此精细尺度的晶体管在实现电学互联上存在巨大困难。可变形液态金属量子材料与器件技术思想的提出,可能助推新一代量子计算与智能系统的制造和集成技术的突破。

基于液态金属器件,该研究组还在早前于国际上首次提出了液态金属计算机的基本概念和技术方案,相应发明专利的基本架构和核心器件已获得受理,系国际上该领域的全新尝试。

美国两机械工程师试图创造出柔软到能够变形的“晶体管”

美国《物理科学》官方网站11月3日报道,来自卡内基·梅隆大学的机械工程师卡梅尔·马杰迪和詹姆斯·魏斯曼发现用液态合金能够制作出晶体管,从而让更多电子元件实现柔性转化。

晶体管是其实是一个处理信号和数据的微型器件。传统意义上,作为一种固体半导体器件,它具有检波、整流、放大、开关、稳压和信号调制等多种功能。不管是笔记本电脑、智能手机还是日常使用的数字温控器,都要用到它。可以说,它几乎是每个电子设备背后的核心元件。

面对如此强大的元件,科学家们自然不会放过任何一次改进机会,两位机械工程师就试图用新方法创造出柔软到能够变形的“流体晶体管”。寻找新材质是第一步,但像铜或银等硬质金属,或汞这类有毒的液态金属都已被排除在外,研究者使用了稀有金属中的铟和镓制作出一种混合的液态合金,能够直接注入橡胶内部,让电路像皮肤一样,柔软又具有弹性。

科学家利用温度、电压与碱性溶液来改变液态金属的特性。

常温常压下铟的熔点为156.61摄氏度,非常软,比铅的硬度低得多,用指甲就能刻痕。而镓的熔点仅为29.78摄氏度,常温常压下就是液态,同时还具有稳定固体的复杂结构。研究者们在与北卡罗来纳州立大学的科学家迈克尔·迪基的合作中,发现液态金属不仅可以用来制作柔性电路,还具备做电气开关的功能。

在新型的“流体晶体管”中,打开或关闭两个液态金属液滴之间的连接就能实现开关功能。在电路两端,若有一端电压降低,金属液滴就会相互运动并融合成一体,形成导电的“金属桥”,若两端电压相等,金属液滴就会自动断开,电路就不再通电。

这种对“黏糊糊”金属的利用方式潜力无限,从本质上讲,“流体晶体管”是一种更加复杂的开关,而液态合金金属能在无毒的前提下实现柔性控制电路,且只用少量电压就成功模仿了传统晶体管的特性。

本项目的研究论文已发表于杂志《高级科学》中,工程师卡梅尔·马杰迪在论文中表示,研究小组从对毛细管的不稳定性研究中得到了启发。在生活中,人们常常会看到,打开水龙头,在流量变为极低的过程中,水会发生从稳定流到单液滴的转变。这种性质有个学名,被称为瑞利泰勒不稳定性。

研究者接下来还需找到诱导液态合金金属液滴产生这种不稳定性的方法,就能解决“流体晶体管”内液滴在一滴状态与两滴状态间的转换问题。

马杰迪和同事在对氢氧化钠溶液的液滴进行一系列测试后,发现液滴的不稳定性可以被外部电压和电化学反应之间的耦合反应所驱动。原理是,耦合反应会引发液滴表面产生氧化梯度,从而引发液滴的表面张力产生梯度,最终使一个液滴转化为两个液滴。

试验中,两个液滴就类似于“流体晶体管”中的源极和漏极,借助场效应原理,就能通过编程来连接和断开电路,甚至还能用来创建和重构物理电路!

但凡能通过编程来改变材料应用,那么方法几乎是无穷无尽的。而一旦材料可以用编程来改变结构,那么其功能也会随之改变,甚至能够重组内部组织,以修复自身在极端环境下受到的损坏。研究者们畅想,未来液态合金制成的“流体晶体管”将会用在那些需要巨大物理结构变形的制造领域,比如,一架仿生的鸟形飞行机器人。以液态合金为血脉筋骨的机器人,无论是收缩还是张开翅膀,机翼上的电路都能随之变形,重新配置,保持正常工作的运行,不受形态变化的影响。

这种新的电子元件和合金材料也适用于制造液体计算机,科学家们甚至提出将未来的液态计算机与生物材料相结合,从而以更直接的方式了解人体内部的情况,比如仿生义肢等。它们能直接与人体组织接触,既能充当疾病监测器,也能帮助患者恢复残疾部位的功能。

此外,部分搜索和救援类型的机器人也可以用它们来取代部分零件,这样在受到损坏时,就能自我更新电路,从而提高工作效率,就像《终结者》系列电影中的反派角色,机器人T-1000一样。虽然这些畅想目前听起来还像科幻小说一样,但终有一天,柔性计算机会变得像今天的超薄笔记本电脑一样,随处可见。

分享到
来源:观察者网综合 | 责任编辑:梁福龙
专题 > 科技前沿
科技前沿
风闻·24小时最热
网友推荐最新闻
切换网页版
下载观察者App
tocomment gotop